ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding.

نویسندگان

  • Shun-Ichi Sekine
  • Osamu Nureki
  • Daniel Y Dubois
  • Stéphane Bernier
  • Robert Chênevert
  • Jacques Lapointe
  • Dmitry G Vassylyev
  • Shigeyuki Yokoyama
چکیده

Aminoacyl-tRNA synthetases catalyze the formation of an aminoacyl-AMP from an amino acid and ATP, prior to the aminoacyl transfer to tRNA. A subset of aminoacyl-tRNA synthetases, including glutamyl-tRNA synthetase (GluRS), have a regulation mechanism to avoid aminoacyl-AMP formation in the absence of tRNA. In this study, we determined the crystal structure of the 'non-productive' complex of Thermus thermophilus GluRS, ATP and L-glutamate, together with those of the GluRS.ATP, GluRS.tRNA.ATP and GluRS.tRNA.GoA (a glutamyl-AMP analog) complexes. In the absence of tRNA(Glu), ATP is accommodated in a 'non-productive' subsite within the ATP-binding site, so that the ATP alpha-phosphate and the glutamate alpha-carboxyl groups in GluRS. ATP.Glu are too far from each other (6.2 A) to react. In contrast, the ATP-binding mode in GluRS.tRNA. ATP is dramatically different from those in GluRS.ATP.Glu and GluRS.ATP, but corresponds to the AMP moiety binding mode in GluRS.tRNA.GoA (the 'productive' subsite). Therefore, tRNA binding to GluRS switches the ATP-binding mode. The interactions of the three tRNA(Glu) regions with GluRS cause conformational changes around the ATP-binding site, and allow ATP to bind to the 'productive' subsite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311

For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activa...

متن کامل

Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates.

The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which gluta...

متن کامل

Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS.

It is impossible to predict which pathway, direct glutaminylation of tRNA(Gln) or tRNA-dependent transamidation of glutamyl-tRNA(Gln), generates mitochondrial glutaminyl-tRNA(Gln) for protein synthesis in a given species. The report that yeast mitochondria import both cytosolic glutaminyl-tRNA synthetase and tRNA(Gln) has challenged the widespread use of the transamidation pathway in organelles...

متن کامل

Dispensability of zinc and the putative zinc-binding domain in bacterial glutamyl-tRNA synthetase

The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynec...

متن کامل

The isolation of a peptide from the catalytic domain of Bacillus stearothermophilus tryptophyl-tRNA synthetase. The interaction of Brown MX-5BR with tyrosyl-tRNA synthetase.

Tryptophyl-tRNA synthetase is irreversibly inactivated by Procion Brown MX-5BR with an apparent dissociation constant (KD) of 8.8 microM and maximum rate of inactivation k3 0.192 s-1. The specificity of the interaction is supported by two previously reported observations. Firstly, Brown MX-5BR inactivation of tryptophyl-tRNA synthetase is inhibited by substrates, and secondly, the animated deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2003